Multiparty computation (MPC) is a technique in cryptography that enables multiple parties to jointly compute a function over their private inputs without revealing those inputs to each other or to any external parties. In other words, MPC allows multiple parties to perform a computation over their confidential data, without revealing any information about that data to others involved in the computation. This technique is particularly useful in scenarios where multiple parties need to collaborate and perform computations, but none of them want to share their data with the others, such as in financial transactions, healthcare data analysis, or voting protocols
In an MPC protocol, two or more parties each hold a secret input, and they want to compute a function of their inputs without revealing their inputs to each other. The primary goal of an MPC protocol is to enable the participants to compute the desired computation results while preserving the privacy of their data.
For example, suppose that two hospitals want to collaborate to identify patients with a rare health condition without revealing their identities to each other. In that case, they can use MPC to jointly compute the proper function on their entire patient datasets. This approach can help them maintain privacy while still obtaining valuable insights into rare health conditions.
In summary, MPC has numerous benefits in terms of privacy, security, and trustless collaboration. However, implementing MPC can be challenging, and it may not be suitable for all use cases due to complexity, latency, and threshold limitations.